

http://natscience.jspi.uz

No5/3(2021)

biology chemistry geography

O'ZBEKISTON RESPUBLIKASI OLIY VA O'RTA MAXSUS TA'LIM VAZIRLIGI

ABDULLA QODIRIY NOMIDAGI JIZZAX DAVLAT PEDAGOGIKA INSTITUTI TABIIY FANLAR FAKULTETI

dotsenti, kimyo fanlari nomzodi

DAMINOV G'ULOM NAZIRQULOVICH

tavalludining 60 yilligiga bag'ishlangan

onlayn konferensiya materiallari

Jizzax-2021

ТАХРИР ХАЙЪАТИ

Бош мухаррир -

У.О.Худанов

т.ф.н., доц.

Бош мухаррир ёрдамчиси-Д.К.Мурадова,

PhD, доц.

Масъул котиб-

Д.К.Мурадова

Муассис-Жиззах давлат педагогика институти

Журнал 4 марта чикарилади

(хар чоракда)

Журналда чоп этилган маълумотлар аниклиги ва тўғрилиги учун муаллифлар масъул

Журналдан кўчириб босилганда манбаа аниқ кўрсатилиши шарт

ТАХРИРИЯТ АЪЗОЛАРИ

- 1. Худанов У.О. ЖДПИ Табиий фанлар факултети декани,т.ф.н., доц.
- 2. Шылова О.А.-д.х.н., профессор Института химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН)
- 3. Маркевич М.И.-ф.ф.д. проф Белорусия ФА
- 4. Elbert de Josselin de Jong- προφεссор, Niderlandiya
- 5. Кодиров Т-ТТЕСИ к.ф.д, профессор
- 6. Абдурахмонов Э СамДУ к.ф.д., профессор
- 7. Сманова З.А,-ЎзМУ к.ф.д., профессор
- 8. Султонов М-ЖДПИ к.ф.д,доц
- 9. Яхшиева 3- ЖДПИ к.ф.д, проф.в.б.
- 10. Рахмонкулов У- ЖДПИ б.ф.д., проф.
- 11. Мавлонов Х- ЖДПИ б.ф.д.,проф
- 12. Муродов К-СамДУ к.ф.н., доц.
- 13. Абдурахмонов F- ЎзМУ фалсафа фанлари доктори (кимё бўйича) (PhD), доц
- 14. Хакимов К ЖДПИ г.ф.н., доц.
- 15. Азимова Д- ЖДПИ фалсафа фанлари доктори (биология бўйича) (PhD), доц
- 16. Юнусова Зебо ЖДПИ к.ф.н., доц.
- 17. Гудалов М- ЖДПИ фалсафа фанлари доктори (география фанлари бўйича) (PhD)
- 18. Мухаммедов О- ЖДПИ г.ф.н., доц
- 19. Хамраева Н- ЖДПИ фалсафа фанлари доктори (биология фанлари бўйича) (PhD)
- 20. Рашидова К- ЖДПИ фалсафа фанлари доктори (кимё бўйича) (PhD), доц
- **21**. Мурадова Д- ЖДПИ фалсафа фанлари доктори (кимё фанлари бўйича) (PhD), доц

Жиззах давлат педагогика институти Табиий фанлар факултети

Табиий фанлар-Journal of Natural Science-электрон журнали

/http/www/natscience.jspi.uz

УДК:541.64.542.952

ЭМУЛЬСИОННАЯ ПОЛИМЕРИЗАЦИЯ ЭФИРОВ АКРИЛОВОЙ КИСЛОТЫ С ДИЭТИЛЭТИНИЛКАРБИНОЛА В ПРИСУСТВИИ ЭМУЛЬГАТОРОВ

Шарипов Шавкат Рахманович - кандидат химических наук, доцент, Шарифов Гуломжон Набиевич- преподаватель,

Джиззакский государственный педагогический институт sharifov-gulom@mail.ru

Насимов Хасан Муродович - кандидат химическихнаук, доцент,

Самаркандский Государственний университет

Аннотация. Изучена закономерность радикального химического иницирования эмульсионной полимеризации акрилового эфира диэтилэтинилкарбинола, в присутствии диспергаторов АППК, ОП-10, ОС-10Е-30. Показано равномерное снижение значения относительной скорости полимеризации изученных процессов с возрастанием доли эмульгатора, при различных температурах, что указывает на идентичность механизма их протекания.

Ключевые слова: мономер, инициирование, хлорангидрит метакриловой кислоты, термостойкость, триэтиламин, гель-эффект,метакрилового эфира диэтилэтинилкарбинола, эмульгатор, эмульсионная система.

Abstract. The regularity of the chemical initiation of ethacididimethylethynylate polymerization in the presence of solvents such as nheptane and n-dioxane was studied. A uniform decrease in the relative velocity (Ws/Wm) of the studied processes with an increase in the solvent fraction is shown, which indicates the identity of the mechanism of their occurrence.

Keywords: monomer, initiation, itaconic acid acid chloride, thermal stability, trietylamine, gel effect, ethacididimethylethyl, n-heptane, n-dioxane.

Введение. Полимеризация виниловых мономеров в среде водных растворов эмульгаторов является одним из наиболее широко использовуемых методов синтеза ряда полимеров [1,2]. Она, обладая всеми выше отмеченными преимуществами суспензионной полимеризации по сравнению с проведениями реакции в массе и растворе имеет также специфические достоинства как получение тонкодисперсных полимеров с более высокой молекулярной массой и относительно узким молекулярно-массовым распределением [2,3]. Кроме того, в отдельных случаях латексы, образующиеся при эмульсионной полимеризации, находят самостоятельное применение, что позволяет, в свою очередь, исключить такие трудоемкие стадии процесса как выделение, очистка

и сушка полимерных продуктов и регенерация растворителя [3,4].Как нам известно, на сегодняшний день очень развита промышленность полимеризация виниловых мономеров в среде растворов эмульгаторов является одним из наиболее широко используемых методы синтеза ацетилена, этилена и пропилена из местного сырья некоторых крупнотоннажных полимеров [1].

Поэтому требуется дополнительное изучение теоретических и экспериментальных основ получения мономеров и превращения их в полимеры.

Как известно [3] эмульсионная полимеризация соответствующих виниловых мономеров является одним из наиболее широко распространенных методов получения ряда крупнотоннажных полимеров. Его основными преимуществами по сравнению с полимеризацией в массе и в присутствии органических растворителей следующие: легкость отвода тепла реакции и тем самым предотвращение локальных перегревов, образование полимеров с повышенной молекулярной массой, широкие возможности регулирования скорости процесса и свойства получаемых продуктов.

Исходя из этого, в данной работе подробно исследовалась полимеризация ацетиленовых мономеров в присутствии неионных эмульгаторов ОП-10 и ОС-20, а также анионных эмульгаторов Е-30 и АППК [4,5,6].

При выборе данных веществ, прежде всего, исходили из их принадлежности к разным классов эмульгаторов и суспенгаторов органический соединений, широкой доступности и дешевизны реагентов, химической чувствительности, нерастворимости в водной среде исходных мономеров, возможности очистки от примесей и ряда других факторов.

Исходный мономер акрилового эфира диэтилэтинилкарбинола (АЭДЭЭК) получали прямым взаимодействием диэтилэинилкарбинола с хлорангидридом акриловой кислоты в присутствии триэтиламина в среде серного эфира. Выход мономера в зависимости от условий синтеза находился в пределах 60-70% от теоретического. После двукратной перегонки он имел следующие физико-химические показатели; Т.кип= 320 ± 10 °C; d_{20} =0,9543; n=1,5637; Р найд.=46,30. Р выч.=46,41.

Полученный мономер АЭДЭЭК был изучен методами ИКспектроскопия, показавшего частоты валентного колебаний с низкой интенсивностью характерных для тройной связи (С≡С) в области 2100-2300 см-1,и по виниловой связи 1670-1780см-1

Исходя из этого и в соответствии с выше поставленными задачами в данном разделе работы подробно исследовалась эмульсионная полимеризация

синтезированных ацетиленовых мономеров(АЭДЭЭК) с использованием в качестве эмульгатора АППК (продукт конденсации 10-12молей окиси этилена со смесью моно-и диалкилфенолов с алкильными остатками, содержащими 8-10 атомов углерода)[5,6].

Обсуждение результатов. Условия полимеризации мономеров были следующие: сначала полимеризация проводились в присутствии различных количеств АППК (0.2-2.0 масс.%). В водной фазе и при следующих других условиях, концентрация ДАК 11,6. 10⁻³ моль/л, температура 343К ,соотношение мономера и водной фазы 1:3, содержание и продолжительность реакции 1-4 часа. Полученные экспериментальные данные представлены на рисунке [1,4,8].

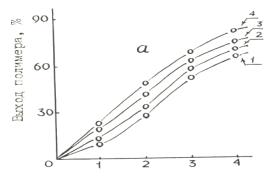


Рис.-1. Кинетика химически инициированной

эмульсионной полимеризации МАЭДЭЭК при различных соотношениях мономера и водной фазы: 1- 1:1, 2- 1:3, 3- 1:5, 4-6 , [ДАК] = $11.6*10^{-3}$ моль/л, [АППК] = 0.5 масс.%, T = 343 К.

Как следует из эксперимента выход полимера и, соответственно, скорость реакции мало зависят от концентрации АППК. Это, очевидно, объясняется достаточностью во всёх случаях количества диспергатора для стабилизации капель мономера в водной фазе. Следует отметить, что такая незначительная зависимость скорости от концентрации водорастворимых эфиров моно-и диалкилфенолов с алкильными остатками, содержащими 8-10 атомов углерода эмульсионной полимеризации ряда других виниловых мономеров[6,7].

Наблюдаемое же некоторое возрастание скорости по мере повышения содержания АППК, по-видимому, связано с увеличением количества капель мономера в водной фазе.

В то же время скорость исследованных процессов в сравнимых условиях значительно превышает таковую полимеризации в массе для всех мономеров. Причина этого, с одной стороны, обусловлена возможностью передачи цепи на молекулы АППК, и в результате чего получением из нее дополнительных инициирующих радикалов, обладающих достаточной активностью, а с другой – эффективностью отвода тепла реакции из-за протекания процесса в такой теплоёмкой среде как вода, вследствие чего, в некоторой степени,

предотвращаются местные перегревы и уменьшается вероятность образования веществ, ингибирующих полимеризацию.

Кроме того, при эмульсионной полимеризации изученных мономеров, как и в случае других виниловых соединений, очевидно, сначала на поверхности капель мономера, а затем и на поверхности полимерно-мономерных частиц образуется защитный слой из АППК, предотвращающий их коагуляцию. В результате этого также уменьшается скорость реакции обрыва цепи. Кинетические кривые, в отличи от таковых для других методов проведения реакции, в некоторой степени имеют S-образный вид, что аналогично случаю гетерофазной полимеризации мономера [6,7]. Однако, по-видимому, из-за протекания полимеризация сначала в отдельных мицеллах, а далее в латексных частицах подвижность растущих макрорадикалов ограниченаи поэтому вероятность обрыва цепей в результате взаимодействивия двух таких радикалов значительно снижается. В то же время благодаря непрерывному поступлению мономера из капель эмульсии в реакционную зону скорость роста цепи будет высокой. Наблюдаемое оставаться досаточно некоторое замедление образования полимеров в конце процесса объясняется уменьшением общего количества мономера В системе. Зависмость скорости эмульсионной полимеризации мономеров от концентрации АППК имеет проямолинейный Из экспериментальных данных найдены значения т, которые для полимеризации АЭДМЭК, АЭМЭЭК, АЭЭЦГ и АЭД, соответственно равны 0,20; 0,26; 0,23 и 0,22. Такие пониженные значения т являются обычными для полимеризации виниловых мономеров В присутствии большинства эмульгаторов и свидетельствуют об их преимущественном участии в процессе образования мицелл [6,7].

Из зависимости скорости полимеризации от концентрации ДАК найдены величины n, которые для полимеризации АЭДМЭК, АЭМЭЭК, АЭЭЦГ и АЭД соответственно равны 0.57; 0.60; 0.67 и 0.64.

Таким образом, химически инициированная эмульсионная полимеризация ацетиленовых мономеров описывается следующими уравнениями:

АЭДМЭК
$$w=[J]^{0,50}$$
 [АППК]^{0,30}, АЭДЭЭКЛИ $W=[J]^{0,52}$ [АППК]^{0,27}, АЭМЭЭК $w=[J]^{0,54}$ [АППК]^{0,26}, АЭЭЦГ $W=[J]^{0,55}$ [АППК]^{0,23}.

На эмульсионную полимеризацию мономеров, как и в случае предыдущих изученных процессов, существенное воздействие оказывает температура. При этом реакции проводили при следующих условиях: температура 333, 343 и 353 К, концентрация ДАК 11,6.10⁻³ моль/л, соотношение мономеров и водной фазы 1:3, содержание АППК 0,5 масс. %. Из полученых результатов, следует, что с возрастанием температуры во всех случаях образование полимеров

увеличивается, что связано, в основном, с повышением скорости инициирования и роста цепи[7,8].

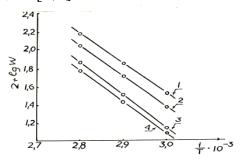


Рис-2. Зависимость скорости химически инцированной эмульсионной полимеризации мономеров от обратной температуры:

1-АЭДМЭК, 2-АЭДЭЭК, 3-АЭМЭЭК, 4-АЭЭЦГ.

На основе полученных результатов рассчитана Е и ее значения для полимеризации АЭДМЭК, АЭМЭЭК, АЭДЭЭК и АЭЭЦГ, соответственно равные 50.6; 55.2; 41.8 и 47.2кДж/моль. Из приведенных данных видно, что найденные значения Е значительно меньше, чем таковые для химически инициированной полимеризации мономеров в массе, что является выгодным достоинством осуществления реакции образования полимеров в эмульсии. При этом одной из основных причин наблюдаемых пониженных величин Е может быть затруднение обрыва растущих цепей из-за протекания процесса в микроблоках, стабилизированных АППК. Как известно [9,10] с возрастанием концентрации инициатора увеличивается выход радикалов из компонентов исходной реакционной смеси и, соответственно, повышается реакции инициирования. При этом, очевидно, инициирования в сующиеся под действием инициатора, в накапливающемся полимере.

Установлено, что выход целевого продукта зависит как от температуры, так и от концентрация инициаторов. Скорость процесса зависит от концентрации инициатора в степени 0,56. Величина энергии активации равна 32, кДж/мол.

Эти данные свидетельствуют о том, что радикальная полимеризация АЭДЭЭК в эмульсионной среди протекает по свободно радикальному механизму, преимущественно с бимолекулярным обрывом растущих цепей.

Рис.3.Термомеханические кривые образцов ПАЭДМЭК(1), ПАЭДЭЭК(2), ПАМЭЭК(3), ПАЭЭЦГ, полученных в эмульсии при АППК =1.0 масс.%концентрация (ДАК)= $11.6*10^{-3}$ моль.л.

На рисунке 3 приведены термомеханические кривые ПАЭДМЭК(1), ПАЭДЭЭК(2), ПАМЭЭК(3), ПАЭЭЦГ, полученных химическим методом в идентичных условиях в массе, а также в среде н-гептана, н-диоксана и ЧХУ, а также в эмульсии и суспензии получения полимеров. Из этого рисунка следует, что почти все изученные полимеры имеют соответствующие температуры стеклования (T_{CT} .) и текучести(T_{T}).

Они особенно ярко проявляются у ПАЭДМЭК(1), ПАЭДЭЭК(2), ПАМЭЭК(3), ПАЭЭЦГ вероятно, благодаря малой сщитости из-за значительной сложности их структуры.

В то же время у образцов вышеприведенных полимеров, синтезированных в эмульсии как с химическим инициированием, так и радиационным методом, термомеханические кривые изменяются не равномерно и они не всегда имеют чёткие $T_{CT.}$ и $T_{T.}$ Кроме того, термомеханические кривые, в зависимости от способа инициирования полимеризации при получении изученных полимеров, близки друг к другу. Поэтому вполне можно предположить, что это обусловлено защитным эффектом водной фазы и протеканием полимеризации в микроколлоидныхобьектах в мицеллах, а затем и в латексных частицах [8,9,10].

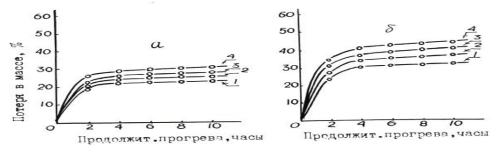


Рис-4. Кинетика (а) термической и (б) термоокислительной деструкции (при 523К) образцов 1-ПАЭМЭЭК., 2- ПАДЭЭК полученных в суспензии при [АППК.]=1,0 МАСС.% [ДАК]=11,6*10⁻³_{МОЛЬ/Л}

Одной из важных характеристик полимеров является их устойчивость к температурным воздействиям (4). Исходя из этого, подробно изучалась термостабильность синтезированных образцов полимеров как в вакууме, так и в воздухе при температурах 500К и продолжительности прогрева до 10 часов. На рисунке приведены данные по термической и термоокислитетельной деструкции вышеприведенных полимеров, полученных химическим методом соответствующих мономеров В эмульсии (мономер:АППК:ДАК), (0.5:0.5:0.5). Как видно, образцы, синтезированные в эмульсии, оказались более термостойкими, чем таковые в присутствии в органическом растворителе. Это, очевидно, связано с меньшей ММ полимеров, во втором случае из-за значительности обрыва цепи как перечными радикалами из растворителя, так и в результате передачи цепи на его молекулы. [9,10,11,12].

Таким образом, в результате систематических исследований синтеза и полимеризации четыре новых мономеров —эфиров метакриловой кислоты с соответствующими ацетиленовыми спиртами выяснены наиболее характерные закономерности оптимальные условия их протекания. Изучение свойств полученных полимерных продуктов показало, что они изменяются в весьма широких пределах в зависимости от способа полимеризации. На них особенно повышенное действие оказывает присутствие в системе постеронных веществ — органических растворителей, воды, эмульгаторов, диспергаторовки полимеров. При этом одним из основных типов взаимодействия реакционной системы с приведенными соединениям является передача цепи на их молекулы, что свидетельствует о достаточной активности радикалов, образующихся из ацетиленовых мономеров.

Во всёх мономеров, а также найденные значения ряда констант (П,М G и Е)однозначно указывают на протекание цепному механизму с преимущвенно бимолекулярным обрывом растущих цепей.

При этом,если считать, что возможность передачи цепи на молекулы исходных мономеров ,а также на образующиеся полимеры незначительна и поэтому их можно не учитывать, то осуществленные реакции в случае радиационной полимеризации под действием гамма лучей с самого начала свободные радикалы образуются из всёх компонентов системы-мономера, добавляемых веществ(S) и образующегося полимера. Это и позволяет предложить общую схему для данных реакций:

- 1. Инцирование полимеризации $M \rightarrow R_1$, $S \rightarrow R_2$, а в случае прививочной полимеризации $\Pi B X \rightarrow R_3$
- 2. Рост цепи $\mathring{R_1} + M \rightarrow \mathring{R_p}$, $\mathring{R_2} + M \rightarrow \mathring{R_p}$ б $\mathring{R_3} + M \rightarrow \mathring{R_p}$

- 3. Бимолекулярный обрыв растущих цепей $\hat{R_p} + \hat{R_p} \rightarrow \Pi$
- 4. Образование радикалов из накопившегося полимера $\Pi \rightarrow \hat{R_4}$
- 5. Рост цепи за счет радикалов из накопившегося полимера $\hat{R_4} \rightarrow \hat{R_p}$
- 6. Передача цепи на молекулы добавляемых веществ $\hat{R_p} + S \rightarrow \Pi + R2$
- 7. Обрыв растущих цепей первичными радикалами $R_p + R_1 \to \Pi$, $R_p + R_2 \to \Pi$, $R_p + R_3 \to \Pi$, $R_p + R_4 \to \Pi B$

В заключение необходимо подчеркнуть, что выше приведенные результаты проведенных исследований, а также многочисленные литературные материалы по полисопряженным полимерам[4,5.6.8] в определенной степени дают основание рекомендоватпродуктк полимеризации изученнкх мономеров использовать в качестве полупровадников, органических катализаторов, комплексо и структурообразователей, для получения самосшиваю уихся плёнок, волокно и покрктий. Крома того, ряд образцов, полность растворяются в органических растворителях, что дает возможность использовать их растворк как склеиваю уйме средства.

Спектральные данные также показывают, что полимеризация идёт, в основном, за счет двойной связи мономера. Изучением растворимости, плотности, термо и теплостойкости полученных полимеров показано, что эти свойства поли-МАЭДЭЭК зависят от условий его синтеза.

Список литературы:

- 1. Багдасарян Х.С. Теория радикальной полимеризации. М. Наука. 1966. $300\ c$.
- 2. Кабанов В. А. Комплексная радикальная полимеризация. М. Наука. 1989. –253 с .
- 3. Елисеева В.И., Иванчев С.С. Эмульсионная полимеризация и ее применение в промышленности. Москва: Химия 1976.- 382 с.
- 4.Мацоян С.Г., Радикальная полимеризация винилэтинилкарбинолов. Изд.АН .Арм,ССР.Химические науки,-1963.-Т16.-№5.-С558-561.
- 5. Рашидова С.Ш. Исследование кинетики полимеризации пропаргиловых эфиров ненасыщенных кислот // ДАН.СССР.-1971.- №9.- С. 52-54.
- 6.Шарипов Ш.Р. Иследование процесса образования акрилового и метакрилового эфиров на основе ацетиленовых спиртов / В сб.: Научные труды ТашГУ.-1988.-С.92-94.
- 7.Гладышев Г.Н. Полимеризация виниловых мономеров. Алма-Ата.: AH.Каз.ССР, 1964. -241 с..

- 8. Шарипов Ш.Р. Радикальная полимеризация метакрилового эфира диметилэтинилкарбинола в растворе // Тез. докл. межд. научн.-практ. конф. Химия и экология зоны Сибири и Урала Иркутск, 1989.-С.23.
- 9.Coffman D.D.Полимеризация винилацетиленовых углеводородов //J.Amtr.Chtem.Soc.,1978,-V.57. P.1955-1959.
- 10.Шанторович С. и др. Кинетика полимеризации углеводородов с сопряженной связью //Высокомолекул.соед.-1961.-Т.3.-№10.- С.1495-1498.
- 11.Шостоковский М.И. и др.Строение продуктов свободнорадикальной полимеризации диметилдивинилэтинилкарбинола и некоторых его эфиров//ЖОХ.-1968.Т.10А.-№3-С.2366-2371.
- 12.Рашидова С.Ш. Полимеризация пропаргиловых эфиров 1,2ненасыщенных кислот в расттворе // Узб.хми.ж.-1973.-№3-С.61